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We present the results of experimental study of nodal domains of wave functions(electric field distributions)
lying in the regime of Shnirelman ergodicity in the chaotic half-circular microwave rough billiard. Nodal
domains are regions where a wave function has a definite sign. The wave functionsCN of the rough billiard
were measured up to the level numberN=435. In this way the dependence of the number of nodal domains:N

on the level numberN was found. We show that in the limitN→` a least squares fit of the experimental data
reveals the asymptotic number of nodal domains:N/N.0.058±0.006 that is close to the theoretical prediction
:N/N.0.062. We also found that the distributions of the areass of nodal domains and their perimetersl have
power behaviorsns~s−t andnl ~ l−t8, where scaling exponents are equal tot=1.99±0.14 andt8=2.13±0.23,
respectively. These results are in a good agreement with the predictions of percolation theory. Finally, we
demonstrate that for higher level numbersN.220−435 the signed area distribution oscillates around the
theoretical limitSA.0.0386N−1.
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In recent papers Blumet al. [1] and Bogomolny and
Schmit [2] have considered the distribution of the nodal do-
mains of real wave functionsCsx,yd in 2D quantum systems
(billiards). The condition Csx,yd=0 determines a set of
nodal lines which separate regions(nodal domains) where a
wave functionCsx,yd has opposite signs. Blumet al. [1]
have shown that the distributions of the number of nodal
domains can be used to distinguish between systems with
integrable and chaotic underlying classical dynamics. In
this way they provided a new criterion of quantum chaos,
which is not directly related to spectral statistics. Bogomolny
and Schmit[2] have shown that the distribution of nodal
domains for quantum wave functions of chaotic systems is
universal. In order to prove it they have proposed a very
fruitful, percolationlike, model for description of properties
of the nodal domains of generic chaotic system. In particu-
lar, the model predicts that the distribution of the areass of
nodal domains should have power behaviorns~s−t, where
t=187/91[3].

In this paper we present the first experimental investiga-
tion of nodal domains of wave functions of the chaotic mi-
crowave rough billiard. We tested experimentally some of
important findings of papers by Blumet al. [1] and Bogo-
molny and Schmit[2] such as the signed area distributionSA
or the dependence of the number of nodal domains:N on the
level numberN. Additionally, we checked the power depen-
dence of nodal domain perimetersl, nl ~ l−t8, where accord-
ing to percolation theory the scaling exponentt8=15/7 [3],
which was not considered in the above papers.

In the experiment we used the thin(heighth=8 mm) alu-
minium cavity in the shape of a rough half-circle(Fig. 1).
The microwave cavity simulates the rough quantum billiard
due to the equivalence between the Schrödinger equation and
the Helmholtz equation[4,5]. This equivalence remains valid
for frequencies less than the cutoff frequencync=c/2h
.18.7 GHz, wherec is the speed of light. The cavity
sidewalls are made of 2 segments. The rough segment 1
is described by the radius functionRsud=R0+om=2

M am

3sinsmu+fmd, where the mean radiusR0=20.0 cm,M =20,
am and fm are uniformly distributed onf0.269,0.297g cm
and f0,2pg, respectively, and 0øu,p. It is worth noting
that following our earlier experience[6,7] we decided to use
a rough half-circular cavity instead of a rough circular cavity
because in this way we avoided nearly degenerate low-level
eigenvalues, which could not be possible distinguished in the
measurements. As we will see below, a half-circular geom-
etry of the cavity was also very suitable in the accurate mea-
surements of the electric field distributions inside the billiard.

The surface roughness of a billiard is characterized by the
functionksud=sdR/dud /R0. Thus for our billiard we have the

angle averagek̃=skk2sudlud1/2.0.488. In such a billiard the
dynamics is diffusive in orbital momentum due to collisions

with the rough boundary becausek̃ is much above the chaos

border kc=M−5/2=0.00056[8]. The roughness parameterk̃
determines also other properties of the billiard[9]. The

FIG. 1. Sketch of the chaotic half-circular microwave rough
billiard in the xy plane. Dimensions are given in cm. The cavity
sidewalls are marked by 1 and 2(see text). Squared wave functions
uCNsRc,udu2 were evaluated on a half-circle of fixed radiusRc

=17.5 cm. Billiard’s rough boundaryG is marked with the bold
line.
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eigenstates are localized for the level numberN,Ne

=1/128k̃4. Because of a large value of the roughness param-

eter k̃ the localization border lies very low,Ne.1. The bor-

der of Breit-Wigner regime isNW=M2/48k̃2.35. It means
that betweenNe,N,NW Wigner ergodicity[9] ought to be
observed and forN.NW Shnirelman ergodicity should
emerge. In 1974 Shnirelman[10] proved that quantum
states in chaotic billiards become ergodic for sufficiently
high level numbers. This means that for high level numbers
wave functions have to be uniformly spread out in the bil-
liards. Frahm and Shepelyansky[9] showed that in the
rough billiards the transition from the exponentially localized
states to the ergodic ones is more complicated and can
pass through an intermediate regime of Wigner ergodicity. In
this regime the wave functions are nonergodic and compose
of rare strong peaks distributed over the whole energy sur-
face. In the regime of Shnirelman ergodicity the wave func-
tions should be distributed homogeneously on the energy
surface.

In this paper we focus our attention on Shnirelman ergod-
icity regime.

One should mention that rough billiards and related sys-
tems are of considerable interest elsewhere, e.g., in the con-
text of dynamic localization[11], localization in discontinu-
ous quantum systems[12], microdisk lasers[13,14] and
ballistic electron transport in microstructures[15].

In order to investigate properties of nodal domains knowl-
edge of wave functions(electric field distributions inside the
microwave billiard) is indispensable. To measure the wave
functions we used a new, very effective method described in
[16]. It is based on the perturbation technique and prepara-
tion of the “trial functions.” Below we will describe shortly
this method.

The wave functionsCNsr ,ud [electric field distribution
ENsr ,ud inside the cavity] can be determined from the form
of electric fieldENsRc,ud evaluated on a half-circle of fixed
radius Rc (see Fig. 1). The first step in evaluation of
ENsRc,ud is measurement ofuENsRc,udu2. The perturbation
technique developed in[17] and used successfully in[17–20]
was implemented for this purpose. In this method a small
perturber is introduced inside the cavity to alter its resonant
frequency according to

n − nN = nNsaBN
2 − bEN

2d, s1d

wherenN is the Nth resonant frequency of the unperturbed
cavity, a and b are geometrical factors. Equation(1) shows
that the formula cannot be used to evaluateEN

2 until the
term containing magnetic fieldBN vanishes. To minimize
the influence ofBN on the frequency shiftn−nN a small
piece of a metallic pin(3.0 mm in length and 0.25 mm in
diameter) was used as a perturber. The perturber was moved
by the stepper motor via the Kevlar line hidden in the groove
(0.4 mm wide, 1.0 mm deep) made in the cavity’s bottom
wall along the half-circleRc. Using such a perturber we had
no positive frequency shifts that would exceed the uncer-
tainty of frequency shift measurementss15 kHzd. We
checked that the presence of the narrow groove in the bottom
wall of the cavity caused only very small changesdnN of

the eigenfrequenciesnN of the cavityudnNu /nNø10−4. There-
fore, its influence into the structure of the cavity’s wave
functions was also negligible. A big advantage of using hid-
den in the groove line was connected with the fact that the
attached to the line perturber was always vertically posi-
tioned what is crucial in the measurements of the square of
electric fieldEN. To eliminate the variation of resonant fre-
quency connected with the thermal expansion of the alu-
minium cavity the temperature of the cavity was stabilized
with the accuracy of 0.05°.

The regime of Shnirelman ergodicity for the experimental
rough billiard is defined forN.35. Using a field perturba-
tion technique we measured squared wave functions
uCNsRc,udu2 for 156 modes within the region 80øNø435.
The range of corresponding eigenfrequencies was fromn80
.6.44 GHz to n435.14.44 GHz. The measurements were
performed at 0.36 mm steps along a half-circle with fixed
radiusRc=17.5 cm. This step was small enough to reveal in
details the space structure of high-lying levels. In Fig. 2(a)
we show the example of the squared wave function
uCNsRc,udu2 evaluated for the level numberN=435. The per-
turbation method used in our measurements allows us to ex-
tract information about the wave function amplitude
uCNsRc,udu at any given point of the cavity but it does not
allow to determine the sign ofCNsRc,ud [21]. Our results
presented in[16] suggest the following sign-assignment
strategy: We begin with the identification of all close to zero
minima of uCNsRc,udu. Then the sign “minus” maybe arbi-
trarily assigned to the region between the first and the second
minimum, “plus” to the region between the second minimum
and the third one, the next “minus” to the next region be-

FIG. 2. Panel(a): Squared wave functionuC435sRc,udu2 (in ar-
bitrary units) measured on a half-circle with radiusRc=17.5 cm
sn435.14.44 GHzd. Panel (b): The “trial wave function”
C435sRc,ud (in arbitrary units) with the correctly assigned signs,
which was used in the reconstruction of the wave function
C435sr ,ud of the billiard (see Fig. 3). The angleu is given in
radians.
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tween consecutive minima and so on. In this way we con-
struct our “trial wave function”CNsRc,ud. If the assignment
of the signs is correct we should reconstruct the wave func-
tion CNsr ,ud inside the billiard with the boundary condition
CNsrG ,uGd=0.

The wave functions of a rough half-circular billiard may
be expanded in terms of circular waves(here only odd states
in expansion are considered)

CNsr,ud = o
s=1

L

asCsJsskNrdsinssud, s2d

whereCs=fsp /2de0
rmaxuJsskNrdu2r drg−1/2 andkN=2pnN/c.

In Eq. (2) the number of basis functions is limited toL
=kNrmax= lN

max, where rmax=21.4 cm is the maximum radius
of the cavity.lN

max=kNrmax is a semiclassical estimate for the
maximum possible angular momentum for a givenkN. Cir-
cular waves with angular momentums.L correspond to
evanescent waves and can be neglected. Coefficientsas may
be extracted from the “trial wave function”CNsRc,ud via

as = Fp

2
CsJsskNRcdG−1E

0

p

CNsRc,udsinssuddu. s3d

Since our “trial wave function”CNsRc,ud is only defined on
a half-circle of fixed radiusRc and is not normalized we
imposed normalization of the coefficientsas: os=1

L uasu2=1.
Now, the coefficientsas and Eq.(2) can be used to recon-
struct the wave functionCNsr ,ud of the billiard. Due to ex-
perimental uncertainties and the finite step size in the mea-
surements ofuCNsRc,udu2 the wave functionsCNsr ,ud are
not exactly zero at the boundaryG. As the quantitative mea-
sure of the sign assignment quality we chose the integral
geGuCNsr ,udu2dl calculated along the billiard’s rough bound-
ary G, whereg is length ofG. In Fig. 2(b) we show the “trial
wave function”C435sRc,ud with the correctly assigned signs,
which was used in the reconstruction of the wave function

C435sr ,ud of the billiard (see Fig. 3). Using the method of
the “trial wave function” we were able to reconstruct 138
experimental wave functions of the rough half-circular bil-
liard with the level numberN between 80 and 248 and 18
wave functions withN between 250 and 435. The wave func-
tions were reconstructed on points of a square grid of side
4.3310−4 m. The remaining wave functions from the range
N=80–435 were not reconstructed because of the accidental
near-degeneration of the neighboring states or due to the
problems with the measurements ofuCNsRc,udu2 along a
half-circle coinciding for its significant part with one of the
nodal lines ofCNsr ,ud. These problems are getting much
more severe forN.250. Furthermore, the computation time
tr required for reconstruction of the “trial wave function”
scales liketr ~2nz−2, where nz is the number of identified
zeros in the measured functionuCNsRc,udu. For higherN, the
computation timetr on a standard personal computer with
the processor AMD Athlon XP 1800+ often exceeds several
hours, what significantly slows down the reconstruction
procedure.

Ergodicity of the billiard’s wave functions can be checked
by finding the structure of the energy surface[8]. For this
reason we extracted wave function amplitudesCnl

sNd

=kn, l uNl in the basisn, l of a half-circular billiard with ra-
dius rmax, where n=1,2,3. . . enumerates the zeros of the
Bessel functions andl =1,2,3. . . is theangular quantum
number. The moduli of amplitudesuCnl

sNdu and their projec-
tions into the energy surface for the representative experi-
mental wave functionsN=86 and N=435 are shown in
Fig. 4. As expected, in the regime of Shnirelman ergo-
dicity the wave functions are extended homogeneously over
the whole energy surface[6]. The full lines on the

FIG. 3. The reconstructed wave functionC435sr ,ud of the cha-
otic half-circular microwave rough billiard. The amplitudes have
been converted into a grey scale with white corresponding to large
positive and black corresponding to large negative values, respec-
tively. Dimensions of the billiard are given in cm.

FIG. 4. Structure of the energy surface in the regime of Shnire-
lman ergodicity. Here we show the moduli of amplitudesuCnl

sNdu for
the wave functions:(a) N=86; (b) N=435. The wave functions are
delocalized in then, l basis. Full lines show the semiclassical esti-
mation of the energy surface(see text).
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projection planes in Fig. 4(a) and Fig. 4(b) mark the
energy surface of a half-circular billiardHsn, ld=EN=kN

2

estimated from the semiclassical formula[7]: ÎslN
maxd2− l2

− l arctansl−1ÎslN
maxd2− l2d+p /4=pn. The peaks uCnl

sNdu are
spread almost perfectly along the lines marking the energy
surface.

An additional confirmation of ergodic behavior of the
measured wave functions can be also sought in the form of
the amplitude distributionPsCd [22,23]. For irregular, cha-
otic states the probability of finding the valueC at any point
inside the billiard, without knowledge of the surrounding
values, should be distributed as a Gaussian,PsCd,e−bC2

. It
is worth noting that in the above case the spatial intensity
should be distributed according to Porter-Thomas statistics
[5]. The amplitude distributionsPsCA1/2d for the wave func-
tions N=86 andN=435 are shown in Fig. 5. They were
constructed as normalized to unity histograms with the bin
equal to 0.2. The width of the amplitude distributionsPsCd
was rescaled to unity by multiplying normalized to unity
wave functions by the factorA1/2, whereA denotes billiard’s
area[see formula(23) in [22]]. For all measured wave func-
tions in the regime of Shnirelman ergodicity there is a good
agreement with the standard normalized Gaussian prediction
P0sCA1/2d=s1/Î2pde−C2A/2.

The number of nodal domains:N versus the level number
N in the chaotic microwave rough billiard is plotted in Fig. 6.
The full line in Fig. 6 shows a least squares fit:N=a1N
+b1

ÎN of the experimental data, wherea1=0.058±0.006,
b1=1.075±0.088. The coefficienta1=0.058±0.006 coin-
cides with the prediction of the percolation model of Bogo-
molny and Schmit[2] :N/N.0.062 within the error limits.
The second term in a least squares fit corresponds to a con-

tribution of boundary domains, i.e., domains, which include
the billiard boundary. Numerical calculations of Blumet al.
[1] performed for the Sinai and stadium billiards showed that
the number of boundary domains scales as the number of the
boundary intersections, that is asÎN. Our results clearly sug-
gest that in the rough billiard, at low level numberN, the
boundary domains also significantly influence the scaling of
the number of nodal domains:N, leading to the departure
from the predicted scaling:N,N.

The bond percolation model[2] at the critical point
pc=1/2 allows us to apply other results of percolation theory
to the description of nodal domains of chaotic billiards. In
particular, percolation theory predicts that the distributions
of the areass and the perimetersl of nodal clusters should
obey the scaling behaviors:ns~s−t andnl ~ l−t8, respectively.
The scaling exponents[3] are found to bet=187/91 and
t8=15/7. In Fig. 7 we present in logarithmic scales nodal
domain areas distributionkns/nl versusks/sminl obtained for
the microwave rough billiard. The distributionkns/nl was
constructed as normalized to unity histogram with the bin
equal to 1. The areass of nodal domains were calculated by
summing up the areas of the nearest neighboring grid sites
having the same sign of the wave function. In Fig. 7 the

FIG. 5. Amplitude distributionPsCA1/2d for the eigenstates:(a)
N=86 and(b) N=435 constructed as histograms with bin equal to
0.2. The width of the distributionPsCd was rescaled to unity by
multiplying normalized to unity wave function by the factorA1/2,
whereA denotes billiard’s area. Full line shows standard normal-
ized Gaussian predictionP0sCA1/2d=s1/Î2pde−C2A/2.

FIG. 6. The number of nodal domains:N (full circles) for the
chaotic half-circular microwave rough billiard. Full line shows a
least squares fit:N=a1N+b1

ÎN to the experimental data(see text),
where a1=0.058±0.006 andb1=1.075±0.088. The prediction of
the theory of Bogomolny and Schmit[2] a1=0.062.

FIG. 7. Distribution of nodal domain areas. Full line shows the
prediction of percolation theory log10skns/nld=−187

91 log10sks/sminld.
A least squares fit log10skns/nld=a2−t log10sks/sminld of the experi-
mental results lying within the vertical lines yields the scaling ex-
ponentt=1.99±0.14 anda2=−0.05±0.04. The result of the fit is
shown by the dashed line.
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vertical axiskns/nl=s1/NTdoi=1
NT ns

sNd /nsNd represents the num-
ber of nodal domainsns

sNd of size s divided by the total
number of domainsnsNd averaged overNT=18 wave func-
tions measured in the range 250øNø435. In these calcula-
tions we used only the highest measured wave functions
in order to minimize the influence of bondary domains
on nodal domain areas distribution. Following Bogomolny
and Schmit[2], the horizontal axis is expressed in the units
of the smallest possible areasmin

sNd , ks/sminl=s1/NTdoi=1
NT s/smin

sNd ,
where smin

sNd =ps j01/kNd2 and j01.2.4048 is the first zero
of the Bessel functionJ0s j01d=0. The full line in Fig. 7
shows the prediction of percolation theory log10skns/nld
=−187/91 log10sks/sminld. In a broad range of log10sks/sminld,
approximately from 0.2 to 1.3, which is marked by the two
vertical lines the experimental results follow closely the the-
oretical prediction. Indeed, a least squares fit log10skns/nld
=a2−t log10sks/sminld of the experimental results lying
within the vertical lines yields the scaling exponentt
=1.99±0.14 anda2=−0.05±0.04, which is in a good agree-
ment with the predictedt=187/91.2.05. The dashed line in
Fig. 7 shows the results of the fit. In the vicinity of
log10sks/sminld.1 and 1.2 small excesses of large areas are
visible. A similar situation, but for larger log10ss/smind.4,
can be also observed in the nodal domain areas distribution
presented in Fig. 5 in Ref.[2] for the random wave model.
The exact cause of this behavior is not known but we can
possible link it with the limited number of wave functions
used for the preparation of the distribution.

Nodal domain perimeters distributionknl /nl versus
kl / lminl is shown in logarithmic scales in Fig. 8. The distri-
bution knl /nl was constructed as normalized to unity histo-
gram with the bin equal to 1. The perimeters of nodal do-
mainsl were calculated by identifying the continues paths of
grid sites at the domains boundaries. The averaged values
knl /nl andkl / lminl are defined similarly as previously defined
kns/nl and ks/sminl, e.g., kl / lminl=s1/NTdoi=1

NT l / lmin
sNd , where

lmin
sNd =2pÎsmin

sNd /p=2ps j01/kNd is the perimeter of the circle
with the smallest possible areasmin

sNd . The full line in Fig. 8
shows the prediction of percolation theory log10sknl /nld

=−15
7 log10skl / lminld. Also in this case the agreement between

the experimental results and the theory is good what is well
seen in the range 0.2, log10skl / lminld,1.2, which is marked
by the two vertical lines. A least squares fit log10sknl /nld
=a3−t8 log10skl / lminld of the experimental results lying
within the marked range yieldst8=2.13±0.23 anda3
=0.04±0.21. The result of the fit is shown in Fig. 8 by the
dashed line. As we see the scaling exponentt8=2.13±0.23
is close to the exponent predicted by percolation theory
t8=15/7.2.14. The above results clearly demonstrate that
percolation theory is very useful in description of the prop-
erties of wave functions of chaotic billiards.

Another important characteristic of the chaotic billiard is
the signed area distributionSA introduced by Blumet al. [1].
The signed area distribution is defined as a variance:SA
=ksA+−A−d2l /A2, whereA± is the total area where the wave
function is positive(negative) andA is the billiard area. It is
predicted[1] that the signed area distribution should con-
verge in the asymptotic limit toSA.0.0386N−1. In Fig. 9 the
normalized signed area distributionNSA is shown for the
microwave rough billiard. For lower states 80øNø250 the
points in Fig. 9 were obtained by averaging over 20 consecu-
tive eigenstates while for higher statesN.250 the averaging
over 5 consecutive eigenstates was applied. For low level
numbersN,220 the normalized distributionNSA is much
above the predicted asymptotic limit, however, for 220,N
ø435 it more closely approaches the asymptotic limit. This
provides the evidence that the signed area distributionSA can
be used as a useful criterion of quantum chaos. A slow con-
vergence ofNSA at low level numbersN was also observed
for the Sinai and stadium billiards[1]. In the case of the
Sinai billiard this phenomenon was attributed to the presence
of corners with sharp angles. According to Blumet al. [1] the
effect of corners on the wave functions is mainly accentuated
at low energies. The half-circular microwave rough billiard
also possesses two sharp corners and they can be responsible
for a similar behavior.

In summary, we measured the wave functions of the cha-
otic rough microwave billiard up to the level numberN
=435. Following the results of percolationlike model pro-
posed by[2] we confirmed that the distributions of the areas
s and the perimetersl of nodal domains have power behav-
iors ns~s−t and nl ~ l−t8, where scaling exponents are equal

FIG. 8. Distribution of nodal domain perimeters. Full line
shows the prediction of percolation theory log10sknl /nld
=−15

7 log10skl / lminld. A least squares fit log10sknl /nld=a3

−t8 log10skl / lminld of the experimental results lying within the
range marked by the vertical lines yieldst8=2.13±0.23 anda3

=0.04±0.21. The result of the fit is shown by the dashed line.

FIG. 9. The normalized signed area distributionNSA for the
chaotic half-circular microwave rough billiard. Full line shows pre-
dicted by the theory asymptotic limitNSA.0.0386, Blumet al. [1].
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to t=1.99±0.14 andt8=2.13±0.23, respectively. These re-
sults are in a good agreement with the predictions of perco-
lation theory [3], which predictst=187/91.2.05 andt8
=15/7.2.14, respectively. We also showed that in the limit
N→` a least squares fit of the experimental data yields the
asymptotic number of nodal domains:N/N.0.058±0.006
that is close to the theoretical prediction:N/N.0.062 [2].

Finally, we found out that the signed area distributionSA

approaches for high level numberN theoretically predicted
asymptotic limit 0.0386N−1 [1].
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