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Experimental investigation of nodal domains in the chaotic microwave rough billiard
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We present the results of experimental study of nodal domains of wave fung@ientric field distributions
lying in the regime of Shnirelman ergodicity in the chaotic half-circular microwave rough billiard. Nodal
domains are regions where a wave function has a definite sign. The wave fungtjooisthe rough billiard
were measured up to the level number435. In this way the dependence of the number of nodal donx¥gjns
on the level numbeN was found. We show that in the limi— oo a least squares fit of the experimental data
reveals the asymptotic number of nodal domatpsN=0.058+0.006 that is close to the theoretical prediction
Nn/N=0.062. We also found that the distributions of the aeasnodal domains and their perimetérsave
power behaviorsi;«s™™ and n|ocl‘7', where scaling exponents are equattol.99+0.14 and”’ =2.13+0.23,
respectively. These results are in a good agreement with the predictions of percolation theory. Finally, we
demonstrate that for higher level numbeds=220-435 the signed area distribution oscillates around the
theoretical limit3,=0.038N "%,
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In recent papers Blunet al. [1] and Bogomolny and Xsin(mé+ ¢,,), where the mean radid&,=20.0 cm,M =20,
Schmit[2] have considered the distribution of the nodal do-a,, and ¢,, are uniformly distributed 0d0.269,0.297 cm
mains of real wave functior¥(x,y) in 2D quantum systems and [0, 2], respectively, and & <. It is worth noting
(billiards). The condition¥(x,y)=0 determines a set of that following our earlier experiend®,7] we decided to use
nodal lines which separate regiofrodal domainswhere a 3 rough half-circular cavity instead of a rough circular cavity
wave functionW(x,y) has opposite signs. Bluret al. [1]  pecause in this way we avoided nearly degenerate low-level
have shown that the distributions of the number of nodakjgenvalues, which could not be possible distinguished in the
domains can be used to distinguish between systems witheasyrements. As we will see below, a half-circular geom-
integrable and chaotic underlying classical dynamics. Ingyry of the cavity was also very suitable in the accurate mea-
this way they provided a new criterion of quantum chaoss,rements of the electric field distributions inside the billiard.
which is not directly related to spectral statistics. Bogomolny  the surface roughness of a billiard is characterized by the

and Schmit[2] have shown that the distribution of nodal fynctionk(6)=(dR/d6)/R,. Thus for our billiard we have the
domains for quantum wave functions of chaotic systems is

= ({12 12 a1h
universal. In order to prove it they have proposed a ver)f‘mgle "?‘Ver_agd?—«!‘ (9,»") __0'488' In such a b||||ard.t.he
fruitful, percolationlike, model for description of properties dynamics is diffusive in orbital momentum due to collisions

of the nodal domains of generic chaotic system. In particuwith the rough boundary becaukés much above the chaos
lar, the model predicts that the distribution of the are@$  porder k,=M~>2=0.00056[8]. The roughness parametTer
nodal domains should have power behavigrs™, where  determines also other properties of the billigi@]. The
7=187/91[3].

In this paper we present the first experimental investiga- : . : . : . : . :
tion of nodal domains of wave functions of the chaotic mi-
crowave rough billiard. We tested experimentally some of 20
important findings of papers by Blumt al. [1] and Bogo-
molny and Schmif2] such as the signed area distributiby
or the dependence of the number of nodal domgipsn the
level numbem. Additionally, we checked the power depen-
dence of nodal domain perimetdcsnpcl"', where accord-
ing to percolation theory the scaling exponeht15/7 [3],
which was not considered in the above papers. 0

In the experiment we used the thineighth=8 mm) alu-
minium cavity in the shape of a rough half-ciralEig. 1).

The microwave cavity simulates the rough quantum billiard

due to the equivalence between the Schrodinger equation and G, 1. Sketch of the chaotic half-circular microwave rough
the Helmholtz equatiofd,5]. This equivalence remains valid pilliard in the xy plane. Dimensions are given in cm. The cavity
for frequencies less than the cutoff frequeney=c/2h  sidewalls are marked by 1 and$ee text Squared wave functions
=18.7 GHz, wherec is the speed of light. The cavity |¥(R,,6)|? were evaluated on a half-circle of fixed radits
sidewalls are made of 2 segments. The rough segment 417.5 cm. Billiard’s rough boundary’ is marked with the bold
is described by the radius functioR(a):R0+2,"T’L2am line.
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eigenstates are localized for the level numié¢rN, s-(a)' ]

=1/12%*. Because of a large value of the roughness param-
eterk the localization border lies very low),= 1. The bor- 6 T

der of Breit-Wigner regime idN,,=M?/48k*=35. It means
that betweerlN. <N <Ny, Wigner ergodicity[9] ought to be
observed and forN>N,, Shnirelman ergodicity should
emerge. In 1974 ShnirelmaflO] proved that quantum
states in chaotic billiards become ergodic for sufficiently
high level numbers. This means that for high level numbers
wave functions have to be uniformly spread out in the bil-
liards. Frahm and Shepelyansk®] showed that in the

rough billiards the transition from the exponentially localized & 1-[\ {\/\ I\M AAI\A {\ I\n[\-
states to the ergodic ones is more complicated and can = 0 UVA\I VVAUVV UU UVAV V"VUUU
5‘9 R

pass through an intermediate regime of Wigner ergodicity. In
this regime the wave functions are nonergodic and compose
of rare strong peaks distributed over the whole energy sur-
face. In the regime of Shnirelman ergodicity the wave func- -3 L L L L L L
tions should be distributed homogeneously on the energy ) ) ’ ’ ) )
surface.

In this paper we focus our attention on Shnirelman ergod- g 2. Panela): Squared wave functioh¥ ,s4R., 6)[2 (in ar-

icity regime. ' . bitrary unity measured on a half-circle with radiig=17.5 cm
One should mention that rough billiards and related syst,,..~14.44 GHa. Panel (b):: The “trial wave function”

tems are of considerable interest elsewhere, e.g., in the coRr,.(R_, ) (in arbitrary units with the correctly assigned signs,
text of dynamic localizatiorj11], localization in discontinu- which was used in the reconstruction of the wave function
ous quantum systemgl2], microdisk lasers[13,14 and  W,.(r,6) of the billiard (see Fig. 3 The angled is given in
ballistic electron transport in microstructurghks]. radians.
In order to investigate properties of nodal domains knowl-
edge of wave f_unctl_on_el_ectrlc field distributions inside the o eigenfrequencies, of the cavity| suy|/ vy < 107% There-
microwave billiard is indispensable. To measure the wavegore jts influence into the structure of the cavity’s wave
functions we used a new, very effective method described ifynctions was also negligible. A big advantage of using hid-
[16]. It is based on the perturbation technique and prepargjen in the groove line was connected with the fact that the
tiqn of the “trial functions.” Below we will describe shortly aitached to the line perturber was always vertically posi-
this method. _ o o tioned what is crucial in the measurements of the square of
The wave functions¥(r, ) [electric field distribution  gectric field Ey. To eliminate the variation of resonant fre-
En(r, 6) inside the cavity can be determined from the form quency connected with the thermal expansion of the alu-
of electric fieldEy(R., 6) evaluated on a half-circle of fixed minjum cavity the temperature of the cavity was stabilized
radius R; (see Fig. 1 The first step in evaluation of with the accuracy of 0.05°.
En(Rc, 0) is measurement ofEn(R., 6)|°. The perturbation The regime of Shnirelman ergodicity for the experimental
technique developed {17] and used successfully j[i7-2Q  rough billiard is defined folN>35. Using a field perturba-
was implemented for this purpose. In this method a smaltion technique we measured squared wave functions
perturber is introduced inside the cavity to alter its resonant¥ (R, 6)|?> for 156 modes within the region 8ON<=435.
frequency according to The range of corresponding eigenfrequencies was frgin
_ 2 2 =6.44 GHz t0 v 35=14.44 GHz. The measurements were
v=wn = o(@By - bRy, (@) performed at 0.36 mm steps along a half-circle with fixed
where vy is the Nth resonant frequency of the unperturbedradiusR.=17.5 cm. This step was small enough to reveal in
cavity, a andb are geometrical factors. Equatigh) shows details the space structure of high-lying levels. In Fig)2
that the formula cannot be used to evalusg until the We show the example of the squared wave function
term containing magnetic fiel@, vanishes. To minimize |¥n(R;,6)|* evaluated for the level numb&t=435. The per-
the influence ofBy on the frequency shif—vy a small  turbation method used in our measurements allows us to ex-
piece of a metallic pin3.0 mm in length and 0.25 mm in tract information about the wave function amplitude
diametey was used as a perturber. The perturber was moveldV\(Re, 6)| at any given point of the cavity but it does not
by the stepper motor via the Kevlar line hidden in the grooveallow to determine the sign o¥\(R;, 6) [21]. Our results
(0.4 mm wide, 1.0 mm degpmade in the cavity’s bottom presented in[16] suggest the following sign-assignment
wall along the half-circleR.. Using such a perturber we had strategy: We begin with the identification of all close to zero
no positive frequency shifts that would exceed the uncerminima of |¥\(R;, 8)|. Then the sign “minus” maybe arbi-
tainty of frequency shift measurementd5 kHz. We trarily assigned to the region between the first and the second
checked that the presence of the narrow groove in the bottomminimum, “plus” to the region between the second minimum
wall of the cavity caused only very small chang&s, of  and the third one, the next “minus” to the next region be-
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FIG. 3. The reconstructed wave functidfysr, 6) of the cha-
otic half-circular microwave rough billiard. The amplitudes have
been converted into a grey scale with white corresponding to large
positive and black corresponding to large negative values, respec-
tively. Dimensions of the billiard are given in cm.

tween consecutive minima and so on. In this way we con-
struct our “trial wave function'WV (R, 6). If the assignment

of the signs is correct we should reconstruct the wave func-
tion W\(r, 0) inside the billiard with the boundary condition

Wi(rr, 6r)=0. FIG. 4. Structure of the energy surface in the regime of Shnire-

The wave functions of a rough half-circular billiard may |,an ergodicity. Here we show the moduli of amplitudl@ﬁl“)\ for
be expanded in terms of circular wavére only odd states e wave functionsta) N=86: (b) N=435. The wave functions are

in expansion are considened delocalized in then,| basis. Full lines show the semiclassical esti-
mation of the energy surfadsee text

L W31, 6) of the billiard (see Fig. 3 Using the method of

Wi(r,6) = 2 aCI(kr)sin(so), (2)  the “trial wave function” we were able to reconstruct 138
s experimental wave functions of the rough half-circular bil-
liard with the level numbeN between 80 and 248 and 18
wave functions witiN between 250 and 435. The wave func-
tions were reconstructed on points of a square grid of side
4.3x10* m. The remaining wave functions from the range
N=80-435 were not reconstructed because of the accidental
near-degeneration of the neighboring states or due to the
problems with the measurements F\(R.,#)|?> along a
half-circle coinciding for its significant part with one of the
nodal lines ofWy(r,#). These problems are getting much
more severe foN>250. Furthermore, the computation time
t, required for reconstruction of the “trial wave function”
1 scales liket,«2"2, wheren, is the number of identified
a= |:7_TCSJS(kNRC):| f W\(R, O)sins)ds.  (3)  zerosin the measured functigiry(R;, 6)|. For highem, the
2 0 computation timet, on a standard personal computer with
the processor AMD Athlon XP 1800+ often exceeds several
hours, what significantly slows down the reconstruction
Since our “trial wave function'V(R., ) is only defined on  procedure.
a half-circle of fixed radiusR; and is not normalized we Ergodicity of the billiard’s wave functions can be checked
imposed normalization of the coefficients: EL,Fl|aS|2:1. by finding the structure of the energy surfd@. For this
Now, the coefficientsag and Eq.(2) can be used to recon- reason we extracted wave function amplitudésﬂ}')
struct the wave functiol/\(r, 6) of the billiard. Due to ex- =(n,l|N) in the basisn,| of a half-circular billiard with ra-
perimental uncertainties and the finite step size in the meadius r,,,, wheren=1,2,3...enumerates the zeros of the
surements of W\(R;, 6)|* the wave functionsV(r,6) are  Bessel functions and=1,2,3... is theangular quantum
not exactly zero at the boundaFy As the quantitative mea- number. The moduli of amplitude|§fﬁ')| and their projec-
sure of the sign assignment quality we chose the integraions into the energy surface for the representative experi-
¥/ r|¥n(r, 6)|%dl calculated along the billiard’s rough bound- mental wave functions\=86 and N=435 are shown in
aryI', wherevy is length ofT". In Fig. 2b) we show the “trial  Fig. 4. As expected, in the regime of Shnirelman ergo-
wave function"V¥ 434 R, 6) with the correctly assigned signs, dicity the wave functions are extended homogeneously over
which was used in the reconstruction of the wave functionthe whole energy surfacg6]. The full lines on the

where Cs=[(/2) [ir®J(kyr)|?r dr] Y2 and ky=2mwy/c.

In EqQ. (2) the number of basis functions is limited to
=knma= NSy Wherer,=21.4 cm is the maximum radius
of the cavity.I[f®=kymax iS @ semiclassical estimate for the
maximum possible angular momentum for a givgn Cir-
cular waves with angular momentus®™L correspond to
evanescent waves and can be neglected. Coefficigmtsy
be extracted from the “trial wave functionP\(R., 6) via
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tribution of boundary domains, i.e., domains, which include
wA" the billiard boundary. Numerical calculations of Bluh al.
[1] performed for the Sinai and stadium billiards showed that

FIG. 5. Amplitude distributiorP(¥A™) for the eigenstatesa) the number of boundary domains scales as the number of the

N=86 and(b) N=435 constructed as histograms with bin equal tob d int fi that i ag o Its clear
0.2. The width of the distributio(¥) was rescaled to unity by ~oundary INtersections, that IS ax. VUr resufts clearly sug-

multiplying normalized to unity wave function by the factat?, gest that in the_ rough b'l_l'ar_d_’ at lOV_V level numbiir th_e
where A denotes billiard's area. Full line shows standard normal-00undary domains also significantly influence the scaling of

ized G : dictioB(WAY?) = (1/\27)e VA2, the number o_f nodal dpmair?sN, leading to the departure
ized Gaussian predictioRo( I=(A2me from the predicted scalingy~ N.
projection planes in Fig. (4 and Fig. 4b) mark the The bond percolation mod€l2] at the critical point

energy surface of a half-circular billiarti(n,|)=Ey=k}  p,=1/2allows us to apply other results of percolation theory
estimated from the semiclassical formyf: \’/(|ma>§—2_|2 to the description of nodal domains of chaotic billiards. In
- arctam|—1\’W)+7T/4:7Tn. The peaks|cn“|‘>| are particular, percolation thepry predicts that the distributions
spread almost perfectly along the lines marking the energ)‘?f the areass and the perimeterk of nodal Flusters should
surface. obey the scaling behaviorsgecs™™ andn,«<1™™ | respectively.
An additional confirmation of ergodic behavior of the The scaling exponentg3] are found to ber=187/91 and
measured wave functions can be also sought in the form of =15/7. In Fig. 7 we present in logarithmic scales nodal
the amplitude distributioP(¥) [22,23. For irregular, cha- domain areas distributiofns/n) versus(s/ sy, obtained for
otic states the probability of finding the valdeat any point  the microwave rough billiard. The distributiofms/n) was
inside the bhilliard, without knowledge of the surrounding constructed as normalized to unity histogram with the bin
values, should be distributed as a Gaussﬁ(ﬂ{)Ne—B‘PZ_ [t equal to 1. The areasof nodal domains were calculated by

is worth noting that in the above case the spatial intensitpUmming up the areas of the nearest neighboring grid sites
should be distributed according to Porter-Thomas statistic§aving the same sign of the wave function. In Fig. 7 the
[5]. The amplitude distributionB(WA?) for the wave func-
tions N=86 andN=435 are shown in Fig. 5. They were ok
constructed as normalized to unity histograms with the bin
equal to 0.2. The width of the amplitude distributioR&¥V)
was rescaled to unity by multiplying normalized to unity
wave functions by the factok?, whereA denotes billiard’s
area[see formula23) in [22]]. For all measured wave func-
tions in the regime of Shnirelman ergodicity there is a good
agreement with the standard normalized Gaussian prediction 3t
Po(WAL2) = (1/\2m)e VA2

The number of nodal domaing, versus the level number
N in the chaotic microwave rough billiard is plotted in Fig. 6.
The full line in Fig. 6 shows a least squares it=a;N FIG. 7. Distribution of nodal domain areas. Full line shows the

+b,VN of the experimental data, wheis=0.058+0.006, prediction of percolation theory |Q§(<ns/n>):-lgif 10G10(¢S/ Smir)-

b;=1.075%£0.088. The coefficienf;=0.058+0.006 coin- A least squares fit log({ns/N)) =a,— 710g;({S/ Smiry) Of the experi-
cides with the prediction of the percolation model of Bogo-mental results lying within the vertical lines yields the scaling ex-
molny and Schmif2] Xy/N=0.062 within the error limits. ponent7=1.99+0.14 and,=-0.05+0.04. The result of the fit is
The second term in a least squares fit corresponds to a coshown by the dashed line.

log,((n /n))

-0.5 0.0 05 10 15 20
log,((s/s,.))
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FIG. 9. The normalized signed area distributidX , for the
chaotic half-circular microwave rough billiard. Full line shows pre-
dicted by the theory asymptotic lim{ ,=0.0386, Blumet al.[1].

FIG. 8. Distribution of nodal domain perimeters. Full line
shows the prediction of percolation theory Jg@n,/n))
:—175 logio((I/lmi)- A least squares fit log((n/n))=as
=7 logyo({l/1niny) of the experimental results lying within the 15 . _
range marked by the vertical lines yield$=2.13+0.23 anda; ~ =—7 10010(I/Imi)). Also in this case the agreement between
=0.04£0.21. The result of the fit is shown by the dashed line.  the experimental results and the theory is good what is well
seen in the range 0<210g;o({!/1miw) < 1.2, which is marked
by the two vertical lines. A least squares fit {g@n,/n))

! =ag—7 logo({I/lmiy) Of the experimental results lying
(N) - _ 3 10 mi
number of domains™¥ averaged oveN;=18 wave func within the marked range yields’=2.13+0.23 anday

tions measured in the range 250<435. In these calcula- =0.04+0.21. The result of the fit is shown in Fig. 8 by the

tions we used only the highest measured wave functiong1ashed line. As we see the scaling expongrt2.13+0.23

n ord(tjarl tg minimize thg' |tn_fLu?_nce lg)f”bondaré doma:nsis close to the exponent predicted by percolation theory
on nodal domain areas distribution. Following Bogomoiny . _q5,75 14, The above results clearly demonstrate that

and Schmitf2], the horizontal axis is expressed in the un'tspercolation theory is very useful in description of the prop-

; ) _ N (N)
of the sr(n?llest possible areg;, (s/smin)=(1/NDZJiS/Shn  erties of wave functions of chaotic billiards.

where s.i)=7(joi/ky)® and jo,=2.4048 is the first zero  Another important characteristic of the chaotic billiard is
of the Bessel functionly(jo)=0. The full line in Fig. 7  the signed area distributid, introduced by Bluret al. [1].
shows the prediction of percolation theory Jg@ns/n))  The signed area distribution is defined as a variaite:
=-187/91 10gy({S/Syi). In a broad range of lag((s/smin),  =((A.—A.)?)/A?, whereA, is the total area where the wave
approximately from 0.2 to 1.3, which is marked by the two function is positive(negativg andA is the billiard area. It is
vertical lines the experimental results follow closely the the-predicted[1] that the signed area distribution should con-
oretical prediction. Indeed, a least squares fit,§tig/n))  verge in the asymptotic limit t& ,=0.038 2. In Fig. 9 the
=a,—7l0g,0((S/smi) Of the experimental results lying normalized signed area distributidd is shown for the
within the vertical lines yields the scaling exponemt Mmicrowave rough billiard. For lower states 8N < 250 the
=1.99+0.14 and,=-0.05+0.04, which is in a good agree- Points in Fig. 9 were obtained by averaging over 20 consecu-
ment with the predicted=187/91=2.05. The dashed line in tive eigenstates while for higher stafés~ 250 the averaging
Fig. 7 shows the results of the fit. In the vicinity of Over 5 consecutive eigenstates was applied. For low level
l0g10((S/Smip) =1 and 1.2 small excesses of large areas aréumbersN<220 the normalized distributioNX, is much
visible. A similar situation, but for larger lqg(s/sy,) >4, aPove the predicted asymptotic limit, however, for 228
can be also observed in the nodal domain areas distributior 43° it more closely approaches the asymptotic limit. This
presented in Fig. 5 in Ref2] for the random wave model. provides the evidence that the signed area distribiponan

The exact cause of this behavior is not known but we caP€ Used as a useful criterion of quantum chaos. A slow con-
possible link it with the limited number of wave functions Vergence o, at low level numbers\ was also observed
used for the preparation of the distribution. for the Sinai and stadium billiardgl]. In the case of the
Nodal domain perimeters distributiodn,/n) versus Sinai billiard this phenomenon was attributed to the presence
of corners with sharp angles. According to Bletnal. [1] the
bution (n,/ny was constructed as normalized to unity histo_effect of corners on the wave functions is mainly accen_tL_lated
: at low energies. The half-circular microwave rough billiard

gram with the bin equal to 1. The perimeters of nodal do-y15 nossesses two sharp corners and they can be responsible
mainsl were calculated by identifying the continues paths Offor a similar behavior

grid sites at the domains boundaries. The averaged values |, summary, we méasured the wave functions of the cha-
(n;/n)y and{l/l;y are defined similarly as previously defined otic rough microwave billiard up to the level numbak

(ng/n) and (s/sm, €.9., (/1 =(L/NDENI/IN  where =435, Following the results of percolationlike model pro-

I =27\ | r=2m(joy/ ky) is the perimeter of the circle posed by[2] we confirmed that the distributions of the areas
with the smallest possible ares} The full line in Fig. 8 s and the perimetersof nodal domains have power behav-

shows the prediction of percolation theory g@n/n)) iors ngxs ™ andn;=1~", where scaling exponents are equal

vertical axis(ny/ n>=(1/NT)2i'\‘:Tln(SN)/ n™ represents the num-

ber of nodal domainm(SN) of size s divided by the total

(I i is shown in logarithmic scales in Fig. 8. The distri-
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to 7=1.99+0.14 andr' =2.13+0.23, respectively. These re- Finally, we found out that the signed area distributbp
sults are in a good agreement with the predictions of percoapproaches for high level numbbk theoretically predicted
lation theory[3], which predicts7=187/91=2.05 and7’  asymptotic limit 0.038B™ [1].

=15/7=2.14, respectively. We also showed that in the limit

N— o a least squares fit of the experimental data yields the This work was partially supported by KBN Grant No. 2
asymptotic number of nodal domaitg/N=0.058+0.006 PO3B 047 24. We would like to thank Szymon Bauch for

that is close to the theoretical predictidy/N=0.062[2].  valuable discussions.
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